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Abstract: Accurate, scalable forestry insights are critical for implementing carbon credit-
based reforestation initiatives and data-driven ecosystem management. However, existing
forest quantification methods face significant challenges: hand measurement is labor-
intensive, time-consuming, and difficult to trust; satellite imagery is not accurate enough;
and airborne LiDAR remains prohibitively expensive at scale. In this work, we introduce
ForestSplat: an accurate and scalable reforestation monitoring, reporting, and verification
(MRV) system built from consumer-grade drone footage and 3D Gaussian Splatting. To
evaluate the performance of our approach, we map and reconstruct a 200-acre mangrove
restoration project in the Jobos Bay National Estuarine Research Reserve. ForestSplat
produces an average mean absolute error (MAE) of 0.17 m and mean error (ME) of 0.007 m
compared to canopy height maps derived from airborne LiDAR scans, using 100× cheaper
hardware. We hope that our proposed framework can support the advancement of ac-
curate and scalable forestry modeling with consumer-grade drones and computer vision,
facilitating a new gold standard for reforestation MRV.

Keywords: canopy height; Gaussian Splatting; MRV; ForestSplat

1. Introduction
Reforestation is widely recognized as one of the most important tools in combating

climate change [1], offering numerous benefits such as carbon sequestration and restoring
biodiversity for native species. However, legacy tools for quantifying reforestation efforts
face significant challenges in terms of accuracy, cost and scalability, holding back capital
investments and preventing reforestation from playing a larger role in regulating our
climate. Specifically, traditional field work for forest inventories to obtain tree positions and
diameter at breast height (dBH) measurements is labor-intensive and time-consuming [2–5].
Moreover, field samples today are measured using simple tools like tape measures, calipers,
and clinometers, all of which are susceptible to human error and lead to inaccuracies in
collected data [6]. Traditional fieldwork, being labor-intensive, is also constrained in its
ability to cover large areas. This limitation forces forestry projects to rely on sampling small
regions, which increases the likelihood of measurement errors [7].

A recent NASA project, the Global Ecosystem Dynamics Investigation (GEDI), pro-
vides a repeated canopy height map for the first time, collecting relative heights and
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canopy heights at a resolution of 25 m [8]. The Ice, Cloud, and land Elevation Satellite-2
(ICESat-2) collects canopy height measurements with a 13 × 100 m footprint [9]. To im-
prove the accuracy of spaceborne LiDAR data from GEDI or ICESat-2, several projects
have proposed using multi-sensor fusion to enhance aboveground biomass mapping [10],
including integration with optical imagery from Sentinel-2 [11]. Additionally, two recent
global vegetation height maps are freely available at 10-m and 30-m spatial resolutions,
derived from Sentinel-2 [12] and Landsat [13], respectively. However, while these maps
are useful for scientific applications, they remain limited for local forestry applications
that require very high accuracy and resolution due to their relatively coarse resolution and
large uncertainties.

On the other hand, studies that apply state-of-the-art deep network models directly
to satellite imagery to estimate forest details, such as canopy height and above-ground
carbon stocks in forest ecosystems [14–17], are becoming increasingly popular. Mu-
gabowindekwe et al. applied deep learning techniques to nationwide tree-level carbon
stock estimation in Rwanda, leveraging high-resolution imagery for precise mapping [14].
Other studies have explored different methodologies for carbon stock estimation, including
the integration of multi-modal satellite time-series data [16] and the use of self-supervised
vision transformers trained on aerial LiDAR to generate high-resolution canopy height
maps from RGB satellite images [17]. However, these models are still limited by satellite
resolution. Even high-resolution commercial satellites such as WorldView-3 typically pro-
vide ground sample distances (GSDs) of about 0.3–3 m. In addition, publicly available
datasets, including Landsat and Sentinel-2, have even lower spatial resolutions, with GSDs
of 30 and 20 m, respectively, [15]. Satellite imagery is also predominantly captured from
near-vertical perspectives, which limits the accuracy of canopy height estimation due to
occlusion and the overlap of tree crowns [14]. Moreover, weather conditions, such as
cloud cover and atmospheric interference, pose significant challenges for optical satellite
imagery [18,19]. These limitations hinder the ability to capture detailed forest features such
as crown size and canopy height [20]. The issues are particularly critical in reforestation
settings, where measuring year-over-year changes in carbon stock is essential for generating
carbon credits, yet satellite-based models often struggle to perform accurately.

Airborne LiDAR is considered the gold standard and ground truth for many forestry
applications [19]. Previous studies demonstrate the effectiveness of airborne LiDAR for 3D
reconstruction in forestry mapping, canopy height calculations, and Digital Terrain Maps
(DTMs)—all of which are highly important for reforestation projects [21–23]. However, one
key challenge is the high operational cost associated with LiDAR surveys, which require
specialized aircraft and sensors. This makes frequent large-scale monitoring financially
unfeasible, particularly for developing regions and conservation projects with limited
budgets. Additionally, the high costs of equipment and logistics further constrain the
scalability of LiDAR deployment, rendering it impractical for most forestry projects [24].

Three-dimensional Gaussian Splatting [25] and its scene reconstruction capabilities
have shown promise in various applications such as robotics and autonomous systems,
reproducing texture more faithfully compared to traditional methods like LiDAR and point
cloud techniques [26–29]. In this project, we present a novel reforestation MRV system
integrating large-scale 3D Gaussian Splatting. Our framework relies solely on camera
footage from consumer-grade inexpensive hardware such as DJI Mini drones, bridging the
current gap between inaccurate hand measurements and expensive LiDAR scans, enabling
large-scale, cost-effective, and accurate measurement for forestry.

Technically, we propose a comprehensive and cost-effective pipeline for accurate and
scalable forestry modeling using only high-resolution images captured by a consumer-
grade drone. For Gaussian Splatting, we introduce a simple yet effective method to address
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training challenges in large-scale environments by integrating a neural-agnostic scaffold
densification strategy with a lightweight partitioning process. Additionally, we present an
efficient approach for estimating canopy height maps from Multi-View Stereo point clouds
and 3D Gaussian models.

Furthermore, we open-source a large-scale forestry dataset covering 200 acres, which
includes LiDAR data and 13,657 drone images. We believe this dataset will serve as a
valuable benchmark and comparison baseline for advancing MRV methodologies using
Gaussian Splatting or other computer vision-based approaches.

2. Data
In partnership with the Ocean Foundation and the Jobos Bay National Estuarine

Research Reserve in Puerto Rico, we conducted three months of field data collection
starting in late 2023. To serve as ground truth for our study, we collected 200 acres of
airborne LiDAR scans using a DJI Zenmuse L1 and DJI Matrice 300 RTK. The UAV was
flown two months after the LiDAR data collection at a height of 30 m and a speed of
2 m/s, parameters which were determined to be optimal in prior experiments. To build our
Gaussian Splatting models, we photographed our sites with RGB camera footage from a
consumer-grade DJI Mini 2. The Mini 2 was flown at a height of 60 m and a speed of 5 m/s,
with footage captured at two angles: 90° and 60°. This resulted in 13,657 drone images
for the survey area with an image-side overlap of about 30%. It is also worth mentioning
that the proposed dataset includes images captured at a 60° pitch angle, which potentially
provides a better view of tree crowns and helps mitigate occlusions caused by near-vertical
perspectives commonly found in satellite imagery. We show a satellite visualization of this
area in Figure 1.

66.168°W, 17.937°N

ROI Boundary

500 m

Figure 1. Two-hundred-acre reforestation study plot within the Jobos Bay Mangrove Forest, Puerto
Rico. The red dashed line outlines the region of interest (ROI). Data were collected in November 2023.

3. ForestSplat Pipeline
We introduce ForestSplat, a large-scale Gaussian Splatting-based pipeline designed

for mapping vegetation in reforestation projects. ForestSplat leverages a novel combination
of Structure from Motion (SfM), Multi-View Stereo (MVS), and 3D Gaussian Splatting (GS)
to enhance the fidelity of modeled trees and successfully generate canopy height maps
(CHMs) from GS models. Figure 2 illustrates the overall design of our approach.
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Footage Collection

Image Alignment

Feature Matching

Structure from Motion

Collection + Preprocessing 3D Reconstruction Densification

Multi View Stereo

Gaussian Splatting

Canopy Height Map

Figure 2. ForestSplat Pipeline Overview. Collection and Preprocessing: Sample drone imagery
is captured by the DJI Mini 2 during aerial surveys, followed by preprocessing steps including
image rotation correction and alignment. Three-dimensional Reconstruction: Feature detection and
matching are performed to establish correspondences, forming the foundation for a 3D sparse point
cloud via Structure from Motion. Densification: The sparse 3D model is further densified using
Multi-View Stereo and enhanced with 3D Gaussian Splatting. Canopy Height Map Generation: Finally,
a canopy height map is generated, where gray represents the ground level, and colors indicate
varying canopy heights.

3.1. Problem Statement

Given a set of N aerial images {I1, I2, . . . , IN}, the objective is to derive a high-
resolution canopy height map representing relative vegetation height to the ground. This
process involves reconstructing a sparse 3D model (Section 3.3) by leveraging SfM to esti-
mate sparse 3D points {Xj} and camera poses {Pi}, densifying the reconstruction using
MVS (Section 3.5), and fitting Gaussian distributions to the dense point cloud through GS to
obtain Gj map (Section 3.6). The final step involves extracting height values from Gaussian
splats and differentiating canopy and ground levels to produce the CHM (Section 3.7).
The overall pipeline is summarized as follows:

I1, I2, . . . , IN
SfM−−→ {Xj}

MVS−−→ {Xdense
j } GS−→ Gj

CHM−−−→ CHM(u, v) (1)

3.2. Preprocessing
Image Pairs Generation

Initially, SfM requires a set of image pairs to guide feature matching. However,
generating image pairs exhaustively would be inefficient, as it creates N(N−1)

2 image pairs.
This is impractical for thousands of images. Instead, we leverage GNSS coordinates for
more efficient image pair generation, focusing on images with high overlap. This approach
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reduces unnecessary computations while still maintaining a highly accurate 3D sparse
model. Specifically, we calculate the ground footprint size of each image as follows:

Gw =
ASw

f
; Gh =

ASw

f
(2)

where A is the altitude, and Sw and Sh are the sensor width and height of the camera,
respectively. From this, we derive the 2D corner coordinates of the initial ground footprint
Finit as:

Finit =

{
(−Gw

2
,

Gh
2
), (

Gw

2
,

Gh
2
), (

Gw

2
,−Gh

2
), (−Gw

2
,−Gh

2
)

}
. (3)

We then calculate the exact ground coordinates for each frame by F
′
f inal = R.F

′
init + t

′

where
′

indicates the homogeneous coordinates, R = Rz(yaw)Ry(pitch)Rx(roll) and t
′
=

(E, N, 0)T is the UTM coordinates. Since the ground footprints are represented as polygons,
we calculate the intersection over union as IoU = Areainter

Areaunion
and use this to represent the

score value of each image pair.

3.3. Structure from Motion

Now, given a limited number of robust image pairs M ≪ N(N−1)
2 generated using the

technique presented in the previous section, we aim to determine the camera extrinsics
[Ri, ti] for each image i, where Ri ∈ SO(3) and ti ∈ R3, as well as a set of sparse 3D
coordinates {Xj} ∈ R3 corresponding to feature j.

For the forestry-based dataset, we observed that sparse keypoints present significant
challenges for achieving accurate matching between image pairs. To address this issue,
we leverage semi-dense features for local feature matching of each pair. Specifically, we
use TopicFM [30] to extract 2D–2D correspondences. Due to the snake-pattern flight path,
consecutive flight legs result in alternate images being flipped by 180° or rotated by 90°.
To improve feature matching accuracy during the Structure from Motion (SfM) process, we
rotate these images to maintain a consistent orientation.

For global applicability to any rotation angle present in the image pairs, we calculate a
global yaw angle θ that appears most frequently across the dataset. The rotation needed for
each image i is then determined as ∆θi = θ − θi.

After completing all matching steps for the aligned images, we reapply the inverse
transformation to the matched pixels j using −∆θi to restore the original orientation.

Additionally, we observed that the traditional incremental SfM pipeline [31] requires
a significant amount of time to fully reconstruct 13K images. This is because incremental
methods attempt to reconstruct the scene starting from two views and then sequentially
register new camera images along with their associated 3D structures. To reduce processing
time, we instead leverage a global SfM pipeline for this sparse 3D reconstruction. Specifi-
cally, we use Glomap [32], a method that combines camera positioning, bundle adjustment,
and structure refinement into a single global positioning step. This approach reduces the 3D
sparse reconstruction time on our large dataset from several days to just a couple of hours.

3.4. Transformation to World Coordinates

Sparse 3D models reconstructed using (SfM) are inherently unscaled [32], as the
camera poses and 3D scene coordinates do not align with a real-world coordinate system.
To address this limitation, we propose a simple method for estimating a transformation
model that maps SfM-derived coordinates to real-world coordinates using noisy GNSS data.

Given xi ∈ R3, the camera position in the original coordinate system of the SfM
model, and x

′
i ∈ R3, the corresponding camera position in the real-world coordinate
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system derived from GNSS data, we aim to estimate a similarity transformation T ∈ R4×4.
The transformation T is represented as:

T =

[
sR t
0⊤ 1

]
, (4)

where s is a scaling factor, R ∈ R3×3 is a rotation matrix, and t ∈ R3 is the translation vector.
The transformation from xi to x

′
i can be expressed as:

x
′
i = T(xi) = sRxi + t. (5)

To obtain a robust estimation of T, we leverage the RANSAC algorithm [33] to mini-
mize the following objective function:

arg min
s,R,t

∑
i∈inliers

∥∥x′i − (sRxi + t)
∥∥2. (6)

In comparison to traditional photogrammetry methods, such as those employed by
Pix4D software [34], which typically require multiple ground control points (GCPs) to
establish a proper scale and coordinate alignment, our approach eliminates this dependency.
This significantly enhances the level of automation in the reconstruction pipeline.

3.5. Multi-View Stereo

Following SfM, we densify sparse 3D SfM point clouds using Multi-View Stereo (MVS)
algorithms. Specifically, we use ET-MVSNet (Enhanced Texture Multi-View Stereo), which
leverages enhanced texture information to generate high-fidelity, dense point clouds [35].
This method significantly improves the detail and provides a more comprehensive represen-
tation of the surveyed environment, forming a better foundation for subsequent splatting.

In detail, given the camera poses {Ri, ti}, intrinsic matrix K, and images {Ii}, as well
as sparse 3D coordinates {Xj}S obtained from a previous SfM step, the goal is to densify
the sparse model from {Xj}S to a denser representation {Xdense

j }D, where D ≫ S.
Specifically, given a reference image i and N − 1 source images, the method first

extracts feature representations for all images using a Feature Pyramid Network (FPN)
integrated with an Epipolar Transformer module at the coarsest resolution. These enhanced
features are then propagated through subsequent layers of the pipeline.

Next, the cost volumes are constructed by warping source image pixels into the
reference camera frustum and measuring their similarity. These feature volumes are
aggregated to construct a 3D cost volume for each depth hypothesis of the reference image.
Finally, a 3D CNN is applied to the cost volume for regularization, enabling the inference
of the most likely depth hypothesis for each pixel in the reference image.

Leveraging this, each reference image i now can have a depth map Di. In the subse-
quent Gaussian Splatting step, this depth map is further utilized as a robust loss function
for training a dense and robust 3D model.

3.6. Gaussian Splatting

We develop a custom large-scale Gaussian Splatting model called ForestSplat that is
built from the gsplat [36] framework and incorporates elements from the implementation of
Level of Gaussians [36,37]. Gaussian splats are especially adept at modeling tree features
like leaves and branches, and allows us to further enrich the models developed from MVS
with pixel-perfect 3D reconstructions. Our approach captures fine-grained details and
accurate texture representations, which are crucial for precise carbon stock estimation
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and tree dimension measurements. It also ensures efficient processing and rendering of
large-scale datasets, making it suitable for extensive reforestation projects.

Preliminary, 3D-GS [36] represents a scene using a set of anisotropic 3D Gaussians,
denoted as Gj = (Xj, Σj, αj), where Xj ∈ R3 is the 3D position, typically initialized from
Structure from Motion (SfM) models. Σj ∈ R3×3 is the covariance matrix of the 3D Gaussian,
encoding the scale and orientation in 3D space, while αj represents its opacity, which is
used for rendering and pruning. The Gaussian splats are projected onto the image plane
during rendering, where gradients in 2D image space are leveraged for optimization.

In this paper, instead of initializing Xj from {Xj}SfM, we initialize the Gaussian means
Xj from the results of a prior coarse densification process, denoted as {Xdense

j }MVS. This
approach significantly enhances the density and quality of the surface Gaussian model Gj,
which is critical for generating a high-accuracy and high-resolution CHM model. In addi-
tion, we also transform the initial 3D points and camera poses to a world coordinate system
using T estimated in Section 3.4.

Inspired from GS-scaffold [38], our work introduces a neural-agnostic scaffold den-
sification strategy that enhances scene representation without directly relying on neural
features. Specifically, we aim to address challenges in dense scene coverage by introducing
gradient-driven anchor growing and structured pruning methods. This later avoids reliance
on computationally expensive neural predictions while maintaining high-quality scene
representation. We present these techniques in the following sub-sections.

3.6.1. Gradient-Driven Anchor Growing

In the proposed approach, new Gaussians are added adaptively based on 2D image-
plane gradients, allowing for a more geometrically informed densification process. Each
Gaussian splat Gj contributes a normalized 2D image-plane gradient, denoted as ∇I2D(Gj).
Anchor candidates are selected based on a threshold τg, forming the growth mask:

Mgrow = {j | ∥∇I2D(Gj)∥ ≥ τg}. (7)

Similar to [38], an anchor is treated as the center of each voxel that represent M point
cloud X ∈ RM×3 as:

V =

{⌊
X
ϵ

⌋}
· ϵ, (8)

where V ∈ RN×3 denotes voxel centers, and ϵ is the voxel size.
To prevent over-densification, candidate positions are quantized into a voxel grid of

size ϵ, ensuring spatial consistency. Unique positions within the voxel grid are retained,
and new anchors are initialized with appropriate scales and opacities. This geometric-only
approach allows efficient expansion of the Gaussian set, even in scenarios where neural
features are unavailable.

3.6.2. Structured Pruning

To maintain computational efficiency and avoid overgrowth, low-opacity and ge-
ometrically inconsistent Gaussians are pruned periodically. The pruning process uses
three criteria:

1. Opacity Threshold: Gaussians with opacity αj below a threshold τo are removed:

Mprune, opa = {j | αj < τo}. (9)

2. Scale Constraint: Gaussians with overly large scales (as determined by the eigenvalues
of Σj) are pruned:

Mprune, scale = {j | λmax(Σj) > τs}. (10)
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3. Geometric Bounds: Gaussians outside the scene’s vertical bounds [zmin, zmax] are
removed:

Mprune, geo = {j | Zj < zmin or Zj > zmax}. (11)

The final pruning mask is the union of these individual masks:

Mprune = Mprune, opa ∪Mprune, scale ∪Mprune, geo. (12)

3.6.3. Gradient-Driven Updates

To refine the representation over time, we track the running average of the gradient
norms for each Gaussian:

grad2dj =
∑T

t=1 ∥∇I2D(Gj)∥
max(1, countj)

,

where T is the current epoch, and countj is the number of frames in which the Gaussian
Gj is visible. This allows us to prioritize highly relevant regions for future densification
or refinement.

3.6.4. Loss Function

To train the 3D Gaussian models we use the following loss function:

Ltotal = Lrecon + λscaleLscale + λopaLopacity + λdepthLdepth, (13)

where λ is the balance coefficient for each loss function. In detail, these loss functions are
defined as:

1. Reconstruction Loss: The reconstruction loss ensures that the rendered colors Irendered

match the ground truth Igt:

Lrecon = (1 − λssim)∥Irendered − Igt∥1 + λssim · (1 − SSIM(Irendered, Igt)), (14)

where λssim balances the L1 loss and the Structural Similarity Index Measure (SSIM).
2. Scale Regularization: The scale regularization penalizes excessively large scales

of Gaussians:

Lscale =
1
N

N

∑
j=1

∥ exp(sj)∥, (15)

where sj represents the logarithmic scale parameters of Gaussian j.
3. Opacity Regularization: The opacity regularization ensures meaningful opacity values:

Lopacity =
1
N

N

∑
j=1

∥σ(αααj)∥, (16)

where σ is the sigmoid function applied to the opacity parameters αααj.
4. Depth Loss: The depth loss enforces consistency between rendered depth and ground-

truth depth:

Ldepth =
1

|M| ∑
i∈M

∥Drendered,i − Dgt,i∥1, (17)

where M is a mask selecting pixels with valid depth measurements, and Dgt,i is
derived from MVS in Section 3.5.

3.6.5. Partitioning for Training Large-Scale GS Model

Since the reconstructed 3D sparse model from SfM is too large to train a single 3D
Gaussian Splatting (GS) model, we propose a simple partitioning process to divide the SfM
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model into multiple smaller partitions. Each partition is then trained individually using
the GS settings described above. Figure 3 illustrates the process of dividing a large SfM
model into multiple sub-models.

Specifically, we calculate the origin point of the SfM model by averaging the latitude
and longitude of all images. Using this origin point as a reference, we define the position
of each partition within a grid of boxes, each measuring 300 m in width and height. This
approach results in multiple boxes, as illustrated in Figure 3. To better accommodate
large-scale datasets, we further employ a Level of Detail (LoD) strategy [39] to enhance
rendering quality and train multiple detail levels for each partition.

Figure 3. Partitioning the SfM model into multiple partitions to handle large-scale Gaussian Splatting.
The red trajectories represent camera positions reconstructed by SfM.

3.7. Estimate Canopy Height Map from Gaussian Models

In this section, we describe the process of estimating the canopy height map (CHM)
from the dense Gaussian models introduced earlier. The CHM construction begins with
calculating the Digital Terrain Model (DTM) using the Cloth Simulation Filter (CSF) [40],
which estimates the ground surface from the given point cloud data. The CSF algorithm
simulates a cloth draped over the inverted point cloud, classifying the points touched by
the cloth as ground points.

Starting with the dense point cloud {Xdense
j }, derived from ET-MVS [35] (see Section 3.5),

which represents a combination of surfaces including the ground, vegetation, and other
objects, we extract a set of cloth nodes {Xcloth} from {Xdense

j } using CSF [40]. Note that the
cloth nodes are not directly extracted from the MVS point cloud; rather, they are points
from the simulated cloth. Specifically, the z positions of the cloth nodes represent the
simulated cloth’s height at certain (x, y) positions, which are arranged in a grid formation.
These cloth nodes are subsequently used to interpolate the DTM as a continuous surface,
Hground(u, v).

Once the DTM is generated, the CHM is computed by estimating the height of the
Gaussian splats relative to the ground surface Hground(u, v). Using the 3D Gaussian model
G obtained in Section 3.6, we render a dense depth map Drendered(u, v) via orthographic
projection [25], ensuring a high-resolution and geometrically accurate representation of the
canopy. The initial CHM is then computed as:

CHM(u, v) = Hcamera − Drendered(u, v)− Hground(u, v), (18)

where Hcamera is the camera height above the reference plane. To mitigate noise and
interpolation errors, we use an external vegetation filter based on a U-Net [41] model Fθ(.),
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which predicts a vegetation mask Mveg(u, v) from the orthographic RGB image rendered
from G:

Mveg = Fθ(Irendered), (19)

where Fθ : RH×W×C → [0, 1]H×W , and Mveg(u, v) ∈ [0, 1] represents the probability that
pixel (u, v) corresponds to vegetation. This filter refines the CHM as:

CHMfinal(u, v) =

CHM(u, v), if Mveg(u, v) > τh,

0, otherwise.
(20)

However, the cloth nodes {Xcloth} obtained from CSF may include unreliable points,
especially in areas with canopy cover. To address this, we refine the cloth nodes using the
vegetation filter Fθ(.). Specifically, we create a binary mask M̂veg(u, v) for the cloth nodes
based on a threshold τveg:

M̂veg(u, v) =

1, if Mveg(u, v) ≥ τveg,

0, otherwise.
(21)

For each cloth node Xcloth,i = (xi, yi, zi), we compute a vegetation score by extracting
a local region of the vegetation mask within a radius r:

Sveg,i =
∑(u,v)∈Regioni

Mveg,i(u, v)

total pixels in Regioni
, (22)

where Regioni is defined as the set of pixels (u, v) within a circular region centered at (xi, yi)

with radius r. Cloth nodes with Sveg,i < τnode are considered invalid and removed. Heights
for these invalid nodes are interpolated linearly using their nearest valid neighbors.

Finally, the refined ground model Hground(u, v) is used to compute the final CHM
using the earlier equations, ensuring accurate canopy height estimation.

3.8. Evaluation Metrics and Baselines

Evaluation metrics: Following previous works [12,17], we use several metrics
to evaluate the CHM estimation results of the proposed method. These metrics in-
clude the RMSE (Equation (23)), which emphasizes higher errors in height estimation,
the MAE (Equation (24)), which provides an equal average of all height errors, and the
ME Equation (25)), which quantifies height bias, with a negative bias indicating that the
estimated height ĥi is lower than the LiDAR reference ground truth hi.

RMSE =

√√√√ 1
N

N

∑
i=1

(hi − ĥi)2 (23)

MAE =
1
N

N

∑
i=1

∣∣∣hi − ĥi

∣∣∣ (24)

ME =
1
N

N

∑
i=1

(hi − ĥi) (25)

We additionally report the R2-block (R2), which is defined as follows:

R2 = 1 − ∑N
i=1(hi − ĥi)

2

∑N
i=1(hi − h̄)2

, (26)
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where h̄ is the mean of actual target values. The R2, also known as the coefficient of
determination, is a statistical measure that indicates how well a regression model fits the
observed data. In this paper, we use it to evaluate how well a block of 150 × 150 pixels
(∼15 m × 15 m) corresponds to the same block size of LiDAR results. Unlike [17], we
select a block size of 15 m instead of 30 m to achieve more reliable results, ensuring higher
accuracy for future applications such as biomass measurement. Furthermore, we also
report the performance of the proposed method using smaller, more challenging block sizes
of 10 m and 5 m.

Baselines: To assess the modeling fidelity of ForestSplat, we compare its canopy height
models (CHMs) with those derived from airborne LiDAR data. Canopy height is a critical
proxy for biomass and serves as the sole metric where airborne LiDAR is unequivocally
considered the ground truth. The CHM for airborne LiDAR is generated using ArcGIS [42],
a widely used tool for processing and analyzing LiDAR data in geospatial research.

To benchmark ForestSplat, we select two baseline methods for comparison, ensuring
an objective comparison of our technique against industry gold standards. The first is SSL-
Satellite [17], a state-of-the-art approach for producing very high-resolution canopy height
maps from RGB imagery using a self-supervised vision transformer and a convolutional
decoder. This method can predict CHMs with high accuracy directly from satellite images.

The second baseline is a traditional photogrammetry-based approach [34], which
employs Pix4D software to generate CHMs. This method relies on well-established pho-
togrammetric techniques to reconstruct canopy height models from imagery.

4. Experiments
This section presents a detailed explanation of the experimental setups and the corre-

sponding results, benchmarked against the baselines, for reconstructing high-resolution and
highly accurate CHMs. The data collection methodology, including drone flight parameters
and image acquisition details, is described in Section 2.

4.1. Experimental Setups

SSL-Satellite [17]: Using Google Earth Pro, we downloaded satellite imagery of the
survey area corresponding to the same time in November 2023 as the LiDAR data collection.
The satellite image is shown in Figure 1, where the region of interest, enclosed by the red
polygon, represents the study area initially used for reforestation research and serves as the
primary benchmark dataset in this work. Specifically, the satellite image was downloaded
at a high resolution of 8192 × 4437 pixels (approximately 0.34 m GSD per pixel). Following
the settings in [17], we cropped the satellite image into a set of 256 × 256 pixel tiles, resulting
in 544 non-overlapping crops. We then applied the same configurations proposed in [17] to
generate CHMs for each crop, where each loaded RGB satellite image was normalized using
a mean of (0.420, 0.411, 0.296) and a standard deviation of (0.213, 0.156, 0.143). Note that the
GSD and image normalization configurations were recommended by the authors [17]. Since
the SSL-Satellite provides several pre-trained models for predicting CHMs, we selected the
same evaluation model as [17], namely SSLhuge-Satellite .

After obtaining all CHMs for 544 non-overlapping crops through SSLhuge-Satellite
model, we merged them back in their correct order to reconstruct an image of the original
size, 8192 × 4437 pixels, and converted it to the GeoTIFF format for accurate comparison
with our method and other baselines.

Photogrammetry-based [34]: For this baseline, we used 13K images captured in this
site in January 2024. We then divided the site into four non-overlapping areas for processing.
This step was necessary because the entire survey area was too large to be processed at once
using Pix4D. Additionally, since the proposed dataset lacks the recommended 70% side
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overlap for Pix4D (having only 30% side overlap, as mentioned in Section 2, which makes
the task highly challenging), we had to manually label matching pixels between images to
ensure acceptable results. Without this manual intervention, the CHM’s performance would
have been significantly worse. This process required at least 24 h of manual labor. Finally,
after exporting the point cloud from Pix4D, we used CloudCompare, which employs the
CSF algorithm [40], to estimate the ground surface and calculate the CHMs. The four
obtained CHM parts from this model were also merged into a unified one and registered as
a GeoTIFF for later comparison.

The Proposed ForestSplat Pipeline: We used the following configurations. We set
IoU = 0.2 for image pair generation, resulting in approximately 500K image pairs compared
to 93M pairs generated using an exhaustive approach. For Gaussian Splatting, we used a
partition size of 300 m× 300 m, which created 18 non-overlapping partitions. Each partition
contains a different number of valid regions, as some partitions are located near the borders
of the survey area.

To train each Gaussian Splatting partition model, we set the growing anchor threshold
τg = 6 × 10−4, pruning opacity threshold τo = 0.04, and scale τs = 0.4. The weighting
coefficients in the total loss function were configured as follows: λscale = 0.01 to regulate
the Gaussian scales, λopa = 0.001 to penalize opacity values, λdepth = 0.01 to enforce depth
consistency, and λssim = 0.2 to balance the reconstruction loss between the L1 term and the
SSIM term.

For CHM generation, we used τnode = 0.1, τh = 0.5, and τveg = 0.25 for all parti-
tions. For training the vegetation filter Fθ(.), we randomly selected 90 tiles (each covering
50 m × 50 m of ground area) from nearby regions of the proposed dataset and manually
labeled them with binary masks to distinguish tree areas from non-tree areas. To ensure
that the model does not encounter out-of-distribution data when applied to the proposed
dataset, we included several randomly labeled tiles selected from the proposed dataset
of the 200-acre area. Note that the total number of labeled tiles used for training and
evaluation remained at 90. The filter was then trained for 50 epochs on 75% of the training
data (67 tile images) using a learning rate of 0.001. The trained filter Fθ(.) was subse-
quently applied to the entire 200-acre dataset. Interestingly, we found that training Fθ(.)
on this small amount of data was sufficient to achieve good results for filtering in the final
CHM calculation.

Since the images were captured two months after the LiDAR data, we adjusted the
CHMs by reducing the height of all values greater than 1 m by 10 cm to enhance the
reliability of comparisons. This adjustment assumes a tree growth rate of 5 cm per month
and was applied to the photogrammetry-based method [34] and the proposed method.
In contrast, the SSL-Satellite results [17] were left unchanged, as the satellite images were
obtained at the same time as the LiDAR data.

4.2. Results
4.2.1. Results at 15 m × 15 m Block Size

We present the obtained results in Tables 1 and 2. Specifically, Table 1 summa-
rizes the comparison results of the proposed pipeline against SSL-Satellite [17] and the
photogrammetry-based method [34] across all partitions in terms of RMSE, MAE, and ME
metrics. The proposed pipeline consistently outperformed the other methods, achieving the
lowest weighted average RMSE (0.272 m), MAE (0.172 m), and ME (0.007 m) across all parti-
tions. In contrast, the SSL-Satellite method exhibited the highest average errors, with RMSE,
MAE, and ME values of 0.854 m, 0.522 m, and 0.090 m, respectively. The photogrammetry-
based method demonstrated intermediate performance, with average errors of 0.653 m
(RMSE), 0.433 m (MAE), and 0.280 m (ME). These results highlight the robustness and
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reliability of the proposed approach in reconstructing CHMs with high precision. In Table 2,
we provide a detailed number of valid blocks, R2 scores, and an arbitrary accuracy at a
threshold of 0.5 m. In the weighted average of all partitions, the proposed ForestSplat
achieved the highest accuracy at 90.9% and demonstrated an R2 score of 0.79, compared to
−1.21 and −0.99 for the photogrammetry-based and SSL-Satellite methods, respectively.
This high R2 score indicates that ForestSplat’s estimations align closely with the ground
truth, outperforming the baseline methods that fail to fit the ground truth effectively.

Table 1. Comparison results of the proposed pipeline against SSL-Satellite [17] and the photogrammetry-
based method [34] in terms of RMSE, MAE, and ME metrics for all partitions. All results are reported
using a block size of 15 m × 15 m. The final row shows the weighted average metrics over different
valid block sizes. The best results are in bold.

Partition SSL-Satellite [17] Photogrammetry [34] ForestSplat (Ours)
RMSE/MAE/ME RMSE/MAE/ME RMSE/MAE/ME

#10 -01_-02 0.897/0.567/0.528 0.133/0.100/−0.014 0.146/0.116/−0.074
#11 000_-02 1.149/0.641/0.530 0.520/0.389/0.349 0.202/0.128/−0.010
#12 001_-02 1.755/0.960/0.644 0.645/0.451/0.384 0.503/0.297/0.148
#13 002_-02 1.357/0.937/0.478 1.192/1.064/1.046 0.715/0.578/0.458
#16 -02_-01 0.332/0.187/−0.048 0.834/0.508/0.507 0.152/0.092/−0.024
#17 -01_-01 0.625/0.330/0.146 0.287/0.138/0.115 0.178/0.115/−0.068
#18 000_-01 0.693/0.350/0.262 0.256/0.153/0.129 0.167/0.115/−0.113
#19 001_-01 1.325/0.781/0.679 0.485/0.263/0.227 0.230/0.133/0.014
#20 002_-01 1.952/1.350/1.122 1.823/1.610/1.608 0.393/0.272/0.073
#22 -03_000 1.889/1.228/1.154 1.844/1.663/1.435 0.809/0.587/0.537
#23 -02_000 0.595/0.306/0.024 0.969/0.720/0.718 0.315/0.164/0.080
#24 -01_000 0.406/0.160/0.044 0.567/0.442/0.442 0.160/0.073/0.022
#25 000_000 0.297/0.136/−0.101 0.473/0.164/0.125 0.147/0.072/−0.010
#26 001_000 1.199/0.969/−0.820 0.972/0.662/−0.217 0.489/0.357/−0.021
#27 002_000 2.200/1.817/1.473 1.530/1.220/1.190 1.167/0.805/0.535
#31 -01_001 0.075/0.029/−0.019 1.498/1.441/1.441 0.057/0.027/−0.006
#32 000_001 0.996/0.744/−0.589 1.283/0.665/0.371 0.363/0.247/−0.093
#33 001_001 1.340/1.201/−0.977 1.062/0.773/0.161 0.519/0.404/0.112

E(X) 0.854/0.522/0.090 0.653/0.433/0.280 0.272/0.172/0.007

Table 2. Comparison of additional metrics across different methods. Detailed results include the
number of valid blocks for each partition, the R2 metric, and the accuracy metric for the number of
blocks with an average error lower than 50 cm. The best results are in bold.

Partition SSL-Satellite [17] Photogrammetry [34] ForestSplat (Ours)
#Blocks/R2/Acc. #Blocks/R2/Acc. #Blocks/R2/Acc.

#10 -01_-02 12/−7.83/58.3 12/0.81 /100.0 12/0.77/100.0
#11 000_-02 100/−1.10/70.0 97/0.64/74.2 100/0.94/96.0
#12 001_-02 177/−1.24/49.7 177/0.74/73.5 177/0.81/78.5
#13 002_-02 24/−1.69/41.7 24/−0.81/20.8 24/0.25/50.0
#16 -02_-01 134/0.04/95.5 122/−4.18/75.4 134/0.80/98.5
#17 -01_-01 371/−1.70/83.6 352/0.52/93.8 371/0.78/98.7
#18 000_-01 400/−1.73/78.2 399/0.67/93.5 400/0.84/99.2
#19 001_-01 398/−2.25/61.8 398/0.63/87.4 398/0.90/95.2
#20 002_-01 83/−0.95/33.7 83/−0.55/10.8 83/0.92/81.9
#22 -03_000 22/−1.67/31.8 22/−1.35/9.1 22/0.51/54.5
#23 -02_000 330/0.33/85.5 248/−0.37/52.4 330/0.81/90.6
#24 -01_000 396/0.15/89.9 264/−0.15/65.5 396/0.87/97.0
#25 000_000 400/0.20/91.2 365/−0.74/94.5 400/0.81/97.8
#26 001_000 381/−1.23/36.0 381/−0.44/49.3 381/0.63/73.8
#27 002_000 22/−4.99/13.6 22/−1.64/31.8 22/−0.69/50.0
#31 -01_001 14/0.34/100.0 14/−232.02/0.0 14/0.63/100.0
#32 000_001 61/−1.10/47.5 61/−2.31/67.2 61/0.72/83.6
#33 001_001 88/−2.30/14.8 88/−0.98/45.5 88/0.51/67.0

E(X) 3413/−0.99/70.5 3129/−1.21/73.4 3413/0.79/90.9

Figures 4 and 5 show the comparative results of canopy height models (CHMs) gener-
ated by different methods, using two example partitions (#19 and #24), evaluated against
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LiDAR as the ground truth. For both partitions, the proposed ForestSplat pipeline consis-
tently demonstrates superior performance compared to SSL-Satellite and photogrammetry-
based methods. The photogrammetry-based method completely failed to produce CHMs
in areas with water, leaving these regions blank. Similarly, the SSL-Satellite method shows
poor performance when merging crop regions, as evidenced by the frequent appearance
of sharp edges in its CHMs, disrupting the continuity of the height maps. Additionally,
the block-wise CHMs and scatter plots visually highlight ForestSplat’s ability to deliver con-
sistent and accurate height estimations, further underscoring its effectiveness in producing
accurate and reliable canopy height maps.

Figure 4. Visual comparison of CHMs generated by different methods for partition #19, compared
against LiDAR. Top row: The CHMs at high resolution of GSD at 0.1 m are shown for Airborne
LiDAR, SSL-Satellite [17], photogrammetry-based Pix4D [34], and ForestSplat (proposed pipeline).
Second row: CHMs downsampled to 15 m × 15 m blocks to facilitate direct comparison with LiDAR-
based block averages. Last row: Satellite RGB image of the study area, providing context for the
canopy structure and scatter plots evaluating the block-wise correlation of each method with the
LiDAR ground truth.

4.2.2. Merging CHMs Result

Here, we present a visual comparison of all methods for generating merged CHMs,
including ForestSplat, crop-based CHMs from SSL-Satellite [17], and four sub-sites from
photogrammetry [34], with LiDAR serving as the ground truth. The visual results, shown in
Figure 6, highlight that the proposed ForestSplat method achieves a consistent match with
the LiDAR CHM. In contrast, the photogrammetry-based method demonstrates the poorest
performance in the merging process, failing to cover many areas and leaving significant gaps.
Meanwhile, the SSL-Satellite method struggles to ensure smooth transitions between adjacent
crop regions, resulting in noticeable discontinuities and sharp edges in the merged CHMs.
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Figure 5. Visual comparison of CHMs generated by different methods for partition #24, compared
against LiDAR [17,34].

Figure 6. Visual comparison results of merged CHMs [17,34].

4.2.3. Changing Blocks Size

To evaluate the performance of each method under different spatial resolutions, we
analyzed the results of canopy height models (CHMs) using varying block sizes: 15 m× 15 m,
10 m × 10 m, and 5 m × 5 m. The scatter plots in Figure 7 illustrate the correlation be-
tween the predicted block mean heights and the LiDAR ground truth for SSL-Satellite,
photogrammetry-based, and the proposed ForestSplat method at these resolutions.
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Figure 7. Scatter plots of estimated CHM block mean heights versus LiDAR ground truth at varying
block sizes (15 m × 15 m, 10 m × 10 m, 5 m × 5 m), comparing SSL-Satellite [17], photogrammetry-
based [34], and ForestSplat (ours).

Across all block sizes, ForestSplat consistently demonstrates superior performance,
achieving the highest R2 values (e.g., 0.788 at 15 m× 15 m, 0.775 at 10 m× 10 m, and 0.759 at
5 m × 5 m) and the lowest mean absolute error (MAE) and mean error (ME). These results
indicate that ForestSplat maintains high accuracy and robustness in capturing canopy
height distributions at finer resolutions, even when block sizes decrease.

In contrast, the photogrammetry-based method shows moderate performance at larger
block sizes (e.g., R2 = −1.208 at 15 m × 15 m), but its reliability deteriorates significantly
as the block size decreases, with lower R2 scores and increasing error. Additionally, large
gaps and deviations from the LiDAR ground truth are observed in smaller blocks.

The SSL-Satellite method performs poorly across all block sizes, with consistently
negative R2 values (e.g., R2 = −0.992 at 15 m × 15 m and R2 = −1.196 at 5 m × 5 m). This
method struggles to capture fine-grained canopy height variations and exhibits higher
MAE and ME compared to the other approaches.

These results demonstrate that ForestSplat is robust to changes in block sizes, offering
reliable estimations at varying spatial resolutions, while the other methods exhibit significant
limitations, particularly at smaller block sizes or very high resolutions. This is because Forest-
Splat leverages 3D Gaussian Splatting, which preserves fine-scale details by continuously
optimizing scene representation at a sub-pixel level. On the other hand, the SSL-Satellite
method relies on coarse-resolution satellite imagery, leading to blurred height estimations
at smaller block scales. Photogrammetry-based CHMs often require high image overlap
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(≥70%) for accurate reconstruction; however, since our dataset had only 30% side overlap, its
reliability at finer spatial resolutions was significantly reduced. Additionally, the point clouds
produced by the photogrammetry-based method remain relatively coarse, whereas Forest-
Splat refines them further—first through MVS (Multi-View Stereo) to improve density and
accuracy, and then through Gaussian Splatting, which continuously optimizes and smooths
the representation for a more precise canopy height model (CHM).

4.2.4. Adjustment for Tree Growth

To account for an assumed tree growth of 5 cm per month and the two-month gap
between the LiDAR data collection and image acquisition, all CHM partitions were adjusted
by −10 cm with CHM(u, v) > 1 m. As shown in Table 3, this adjustment led to a general
improvement in performance metrics, highlighted in green, with notable enhancements in
R2 (e.g., +0.015 on average) and a reduction in MAE (−0.005 m on average). While some
partitions experienced slight reductions in performance, marked in red, the overall metrics
demonstrate better alignment with the LiDAR ground truth after this correction, achieving
an average accuracy of 90.91% within 0.5 m. This adjustment reflects the significance of
accounting for tree growth when comparing CHMs to ground truth data.

Table 3. Performance metrics for CHM partitions of ForestSplat before and after a −10 cm adjustment
to account for tree growth, with improvements in green, reductions in red, and unchanges in gray.

ID Partition #Blocks RMSE MAE R2 ME Acc. at 0.5 m

#10 -01_-02 12 0.146 0.114 0.766 −0.053 100.000%
−10 cm 12 (+0.000) 0.146 (+0.000) 0.116 (+0.002) 0.766 (+0.000) −0.074 (−0.021) 100.000% (+0.000)

#11 000_-02 100 0.214 0.132 0.927 0.021 94.000%
−10 cm 100 (+0.000) 0.202 (−0.012) 0.128 (−0.004) 0.935 (+0.008) −0.010 (−0.031) 96.000% (+2.000)

#12 001_-02 177 0.534 0.321 0.792 0.198 76.840%
−10 cm 177 (+0.000) 0.503 (−0.031) 0.297 (−0.024) 0.815 (+0.023) 0.148 (−0.050) 78.530% (+1.690)

#13 002_-02 24 0.767 0.623 0.140 0.528 54.170%
−10 cm 24 (+0.000) 0.715 (−0.052) 0.578 (−0.045) 0.253 (+0.113) 0.458 (−0.070) 50.000% (−4.170)

#16 -02_-01 134 0.164 0.095 0.767 −0.013 97.760%
−10 cm 134 (+0.000) 0.152 (−0.012) 0.092 (−0.003) 0.799 (+0.032) −0.024 (−0.011) 98.510% (+0.750)

#17 -01_-01 371 0.181 0.110 0.774 −0.054 98.650%
−10 cm 371 (+0.000) 0.178 (−0.003) 0.115 (+0.005) 0.779 (+0.005) −0.068 (−0.014) 98.650% (+0.000)

#18 000_-01 400 0.149 0.103 0.874 −0.099 99.500%
−10 cm 400 (+0.000) 0.167 (+0.018) 0.115 (+0.012) 0.842 (−0.032) −0.113 (−0.014) 99.250% (−0.250)

#19 001_-01 398 0.245 0.137 0.889 0.044 93.720%
−10 cm 398 (+0.000) 0.230 (−0.015) 0.133 (−0.004) 0.902 (+0.013) 0.014 (−0.030) 95.230% (+1.510)

#20 002_-01 83 0.416 0.291 0.911 0.133 80.720%
−10 cm 83 (+0.000) 0.393 (−0.023) 0.272 (−0.019) 0.921 (+0.010) 0.073 (−0.060) 81.930% (+1.210)

#22 -03_000 22 0.864 0.625 0.441 0.593 54.550%
−10 cm 22 (+0.000) 0.809 (−0.055) 0.587 (−0.038) 0.510 (+0.069) 0.537 (−0.056) 54.550% (+0.000)

#23 -02_000 330 0.341 0.175 0.779 0.102 90.000%
−10 cm 330 (+0.000) 0.315 (−0.026) 0.164 (−0.011) 0.812 (+0.033) 0.080 (−0.022) 90.610% (+0.610)

#24 -01_000 396 0.176 0.077 0.839 0.033 96.210%
−10 cm 396 (+0.000) 0.160 (−0.016) 0.073 (−0.004) 0.868 (+0.029) 0.022 (−0.011) 96.970% (+0.760)

#25 000_000 400 0.148 0.073 0.803 −0.003 97.750%
−10 cm 400 (+0.000) 0.147 (−0.001) 0.072 (−0.001) 0.807 (+0.004) −0.010 (−0.007) 97.750% (+0.000)

#26 001_000 381 0.506 0.367 0.603 0.036 74.280%
−10 cm 381 (+0.000) 0.489 (−0.017) 0.357 (−0.010) 0.630 (+0.027) −0.021 (−0.057) 73.750% (−0.530)

#27 002_000 22 1.217 0.846 −0.834 0.603 50.000%
−10 cm 22 (+0.000) 1.167 (−0.050) 0.805 (−0.041) −0.686 (+0.148) 0.535 (−0.068) 50.000% (+0.000)
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Table 3. Cont.

ID Partition #Blocks RMSE MAE R2 ME Acc. at 0.5 m

#31 -01_001 14 0.056 0.026 0.641 −0.005 100.000%
−10 cm 14 (+0.000) 0.057 (+0.001) 0.027 (+0.001) 0.628 (−0.013) −0.006 (−0.001) 100.000% (+0.000)

#32 000_001 61 0.367 0.255 0.715 −0.053 80.330%
−10 cm 61 (+0.000) 0.363 (−0.004) 0.247 (−0.008) 0.722 (+0.007) −0.093 (−0.040) 83.610% (+3.280)

#33 001_001 88 0.551 0.428 0.441 0.195 65.910%
−10 cm 88 (+0.000) 0.519 (−0.032) 0.404 (−0.024) 0.505 (+0.064) 0.112 (−0.083) 67.050% (+1.140)

E(X) 3413.0 0.284 0.177 0.773 0.034 90.419%
E(X)−10cm 3413.0 (+0.000) 0.272 (−0.011) 0.172 (−0.005) 0.788 (+0.015) 0.007 (−0.027) 90.918% (+0.499)

4.2.5. Additional Results

In this section, we present additional example results that demonstrate the high fidelity
of the proposed rendered images compared to satellite images. We also provide qualitative
vegetation prediction results obtained using the proposed method on the rendered images.

In Figure 8, we present two examples of rendered image tiles, each covering an area
of 50 m × 50 m, compared to satellite images. These examples demonstrate that the
proposed method can achieve the ultra-high resolution required for MRV. The rendered
images have a ground sampling distance (GSD) of 1 cm per pixel, with each tile containing
5000 × 5000 pixels. The last column displays predicted vegetation masks generated from
the corresponding rendered images.
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Figure 8. Example of high-fidelity image tiles of 50 m × 50 m (middle) rendered by the proposed
method, compared to satellite images (left). On the right, we present an example prediction result of
the proposed vegetation filter applied to the rendered images (middle), with black areas indicating
predicted trees. The first row is located at 17.935166°N, −66.165946°W, and the second row is at
17.938328°N, −66.170666°W.

Since no hand-labeled ground truth is available for these images, we cannot provide
quantitative metrics for these vegetation predictions. However, we found that the current
filter is sufficient for removing incorrect height estimates from non-vegetation regions.
Nonetheless, we believe that further improving the vegetation filter could potentially
enhance CHM estimation accuracy. Therefore, we identify this as a potential direction for
future work.
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5. Discussion
Discussion. This work demonstrates the promise of using computer vision-based 3D

reconstruction (ForestSplat) as a highly accurate yet more scalable alternative to airborne
LiDAR for reforestation MRV. ForestSplat relies solely on a low-cost camera to achieve
competitive results, with the potential to reduce operational costs by up to 100× compared
to airborne LiDAR scans.

ForestSplat proves most effective in forestry settings where ground visibility is pre-
served within localized areas. As reforested canopies close over time, accurate geographical
understanding of the ground can still be maintained by incorporating temporal dimensions
into the modeling process. However, in forest conservation scenarios with enclosed, dense
canopies or challenging terrains, such as primary tropical rainforests, the performance of
Gaussian Splatting may be limited due to its inability to perceive the ground effectively.

Limitation. While ForestSplat demonstrates high accuracy and cost-effectiveness for
canopy height estimation, there are several limitations to consider. First, the method relies
on high-quality aerial imagery, meaning that variations in lighting conditions, camera
calibration, and flight stability can impact reconstruction quality. Second, dense forest
canopies, such as those found in tropical rainforests, may obstruct ground visibility, lead-
ing to errors in height estimation. Additionally, complex terrains, such as steep slopes
or mountainous regions, may introduce distortions in 3D reconstruction if not properly
corrected with terrain-aware adjustments or external Digital Terrain Models (DTMs). An-
other limitation is the dependence on GNSS accuracy for aligning SfM reconstructions to
real-world coordinates; in GNSS-denied environments, alternative localization methods,
such as visual-inertial odometry (VIO) or SLAM, may be required.

Furthermore, while LiDAR serves as the primary comparison ground truth in this
study, it is not without its own errors, particularly in sparse vegetation regions or dense
canopies where penetration is limited, potentially affecting the accuracy of reference canopy
height maps. Additionally, variations in LiDAR point density and ground filtering algo-
rithms can introduce biases in height estimation, especially in regions with mixed vegeta-
tion structures. Differences in georeferencing accuracy and processing pipelines between
LiDAR and photogrammetry-based CHMs may also contribute to local misalignments,
affecting direct comparisons.

Finally, scalability remains a challenge—while ForestSplat has been validated on a
200-acre site, further optimizations in data processing and computational efficiency will
be needed for large-scale deployments spanning thousands of acres. Addressing these
challenges is crucial to ensuring ForestSplat’s broader applicability and effectiveness in
more diverse and demanding environments.

Furture work. To overcome these limitations, future work will explore the applicabil-
ity of ForestSplat to diverse forest types, including tropical rainforests, temperate forests,
and coniferous woodlands, where differences in canopy density and structure may require
adaptations in Gaussian Splatting parameters and multi-temporal data collection. Addi-
tionally, extending the method to complex terrain conditions, such as mountainous regions,
will involve integrating Digital Terrain Models (DTMs) and exploring GNSS-free camera
pose optimization for areas with poor GNSS signals. To enhance scalability, future research
will investigate distributed processing techniques and cloud-based CHM computation to
extend ForestSplat’s usability to large-scale forest monitoring.

Another important direction is improving tree-level segmentation of 3D Gaussian
Splat models to enable more precise biomass estimation and carbon stock analysis. By re-
fining individual tree extraction, ForestSplat could provide valuable insights into forest
structure, growth dynamics, and carbon sequestration potential, with applications in forest
conservation and climate impact studies. Validation will involve comparisons against
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comprehensive ground truth data, including hand-measured transect data and additional
scans from airborne and terrestrial LiDAR systems. Developing a cost-effective and scalable
MRV system with LiDAR-comparable accuracy is vital for advancing forestry management
and nature-based climate solutions. Such a system would empower foresters to transition
from simple drone scans to detailed, tree-specific intelligence, enhancing forestry prac-
tices such as planting strategies, maintenance, and carbon credit generation. We hope
this work contributes to accelerating the growth of the emerging forestry-based carbon
removal sector.

6. Conclusions
This study introduces the ForestSplat pipeline for high-fidelity mapping of refor-

estation projects. Through both quantitative and qualitative evaluations on a 200-acre
reforestation dataset, we demonstrate the clear advantages of ForestSplat over existing
methods in high-resolution canopy height map estimation. The proposed pipeline excels
in capturing tree structure variability, even at fine spatial scales, significantly improving
both accuracy and resolution. Beyond its cost-effectiveness, ForestSplat provides a scalable
alternative to traditional airborne LiDAR, enabling accurate large-scale forest monitor-
ing with consumer-grade drones. Unlike satellite-based CHM estimation, which suffers
from resolution constraints and occlusions, ForestSplat leverages 3D Gaussian Splatting to
optimize scene representation at a sub-pixel level, preserving fine structural details. We
believe that the ultra-high-resolution canopy height maps generated by ForestSplat can
substantially enhance the monitoring of forest degradation, restoration efforts, and forest
carbon dynamics while maintaining exceptionally low cost requirements.
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